Section 15.2

Double Integrals Over More General Regions

Introduction

Integrating Over Horizontally and Vertically Simple Regions

Setting up Example, Vertically Simple Example, Horizontally Simple Example, Finding the Domain of a 3D Solid

Reversing the Order of Integration

Integrating Over More General Regions

Properties of Double Integrals

An Application Example

PreLecture Video

1 Introduction

Double Integrals Over Arbitrary Regions

For a rectangular region $\mathcal{R} = [a, b] \times [c, d]$, the double integral

 $\iint_R f(x,y) \, dA$

can be calculated as an iterated integral

$$\int_{a}^{b} \int_{c}^{d} f(x, y) \, dy \, dx \qquad \text{or} \qquad \int_{c}^{d} \int_{a}^{b} f(x, y) \, dx \, dy$$

where the inner integral represents a slice of \mathcal{R} at a fixed value of x or y.

In general, suppose \mathcal{D} is an **arbitrary** region in \mathbb{R}^2 . How do we calculate

$$\iint_{\mathcal{D}} f(x,y) \, dA$$

as an iterated integral?

2 Integrating Over Horizontally and Vertically Simple Regions

Joseph Phillip Brennan Jila Niknejad

Simple Regions

Idea: When possible, slice \mathcal{D} into vertical or horizontal strips.

Vertically simple region Horizontally simple region

(The upper and the lower bounds are elementary functions)

(The right and the left bounds are elementary functions)

- In these cases, we can express $\iint_{\mathcal{D}} f(x, y) dA$ as an iterated integral.
- The inner limits of integration are not constant, but depend on the outside variable:

$$\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) \, dy \, dx \qquad \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) \, dx \, dy$$

Simple Regions

Horizontally simple regions

Can be sliced into horizontal strips each with constant *y*-coordinate $\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) dx dy$

Inner limits are functions of outer variable

Outer limits are constants

Steps for Integration Set up

- Draw the region of integration in \mathbb{R}^2 .
- Draw a horizontal arrow in the increasing *x*-direction if the region is horizontally simple; draw a vertical arrow in the increasing *y*-direction if the region is vertically simple
- Choose the lower and upper curves using the arrow in Item
 2. Solve for x in terms of y if the region is horizontally simple and for y in terms of x if the region is vertically simple.
- Find the two constant bounds for *y* if horizontally simple; find the two constant bounds for *x* if vertically simple.
- Set up the inner integral using bounds in Item 3 and the outer bounds using Item 4.
- Integrate the inner first considering the outer variable constant. Replace inner bounds and integrate the outer.

Example 1: Evaluate $\iint_{\mathcal{D}} (x + 2y) \, dA$ where \mathcal{D} is the region between $y - x^2 = 0$ and $y + x^2 = 2$.

Example 2: Evaluate $\iint_{\mathcal{D}} xy \, dA$ where \mathcal{D} is the region bounded by y = x and $y^2 = 3x + 4$.

<u>Solution</u>: Start by drawing D and observe that it is horizontally simple. For each boundary curve, express x as a function of y:

 $x = y \qquad x = \frac{y^2 - 4}{3}$

Intersection points: (-1, -1) and (4, 4).

Example 2 (continued): $\mathcal{D} = \left\{ (x, y) \in \mathbb{R}^2 \mid -1 \le y \le 4, \ \frac{y^2 - 4}{3} \le x \le y \right\}$ $\iint_{\mathcal{D}} xy \, dA = \int_{y=-1}^{y=4} \int_{x=\frac{y^2-4}{2}}^{x=y} xy \, dx \, dy$ Step 5 $= \int_{y=-1}^{y=4} \left| \frac{1}{2} x^2 y \right|_{x=\frac{y^2-4}{2}}^{x=y} dy$ $v^4 - 8v^2 + 16$ $= \int_{-1}^{y=4} \frac{1}{2} (y^2) y - \frac{1}{2} \left(y \frac{(y^2 - 4)^2}{9} \right) dx$ $= \int_{-1}^{4} \left(\frac{-8y}{9} + \frac{17y^3}{18} - \frac{y^5}{18} \right) dy$ $= -\frac{4y^2}{9} + \frac{17y^4}{72} + \frac{y^6}{108} \bigg|^{\frac{1}{2}} = \frac{125}{8}.$

Example 2 (continued): Take another look at the region \mathcal{D} .

• While it is technically possible to represent \mathcal{D} as a set of iterated integrals in order $\iint_{\mathcal{D}} xydydx$, the lower limit of integration will not be elementary:

$$y = \begin{cases} -\sqrt{3x+4} & \text{if } x < -1, \\ x & \text{if } x > -1 \end{cases}$$

Example 3: Find the volume of the tetrahedron bounded by the planes:

$$x + 2y + z = 2$$
 $x = 2y$ $x = 0$ $z = 0$

z (0, 0, 2)x = 2(0, 1, 0)(0, 0, 0) $(1, \frac{1}{2}, 0)$ х \mathcal{D} = 2v Solution: The tetrahedron lies under z = 2 - x - 2y and above the vertically simple region

$$\mathcal{D} = \left\{ (x, y) \mid 0 \le x \le 1, \quad \frac{x}{2} \le y \le 1 - \frac{x}{2} \right\}$$

Volume =
$$\iint_{\mathcal{D}} (2 - x - 2y) \, dA$$

$$= \int_0^1 \int_{\frac{x}{2}}^{1-\frac{x}{2}} (2-x-2y) \, dy \, dx$$

$$= \int_0^1 (x^2 - 2x + 1) \, dx = \frac{1}{3}$$

3 Reversing the Order of Integration

by Joseph Phillip Brennan Jila Niknejad

Changing the Order of Integration

Some regions are both vertically and horizontally simple. **Example 4:**

$$\iint_{\mathcal{D}} f(x,y) \, dA = \int_{1}^{3} \int_{1}^{x^{2}} f(x,y) \, dy \, dx = \int_{1}^{9} \int_{\sqrt{y}}^{3} f(x,y) \, dx \, dy$$

Which iterated integral should you use? Whichever is more convenient.

Reversing the Order Steps

The main reason for changing the order of integration is that the given order results in a non-elementary antiderivative; in those cases, changing the order may be helpful.

- Use the given (current) order and draw a region with the arrow corresponding to the given order.
- Change the arrow form horizontal to vertical or vice versa to reverse the order. Follow Steps 3-6 of integration set-up.

Reversing the Order of Integration

Example 5: Evaluate $\int_0^1 \int_y^1 e^{x^2} dx dy$.

Since $\int e^{x^2} dx$ cannot be evaluated, we need to do something new. Solution: First, draw the domain of integration:

 $\mathcal{D} = \{(x, y) \mid 0 \le y \le 1, y \le x \le 1\}$

It is doubly simple, so it can also be expressed as

 $\mathcal{D} = \{(x, y) \mid 0 \le x \le 1, \ 0 \le y \le x\}$

$$\int_0^1 \int_y^1 e^{x^2} \, dx \, dy = \iint_{\mathcal{D}} e^{x^2} \, dA = \int_0^1 \int_0^x e^{x^2} \, dy \, dx$$

Changing the Order of Integration

Example 5 (continued):

$$\int_{0}^{1} \int_{y}^{1} e^{x^{2}} dx dy = \iint_{\mathcal{D}} e^{x^{2}} dA = \int_{0}^{1} \int_{0}^{x} e^{x^{2}} dy dx$$
$$= \int_{0}^{1} \left[e^{x^{2}} y \Big|_{y=0}^{y=x} \right] dx$$
$$= \int_{0}^{1} x e^{x^{2}} dx$$
$$= \frac{e^{x^{2}}}{2} \Big|_{x=0}^{x=1} = \frac{1}{2} (e-1).$$

4 Integrating Over More General Regions

by Joseph Phillip Brennan Jila Niknejad

Integrating Over General Regions

The region of integration can be subdivided:

If D is the union of D_1 and D_2 , where D_1 and D_2 don't overlap except on their boundaries, then

$$\iint_{\mathcal{D}} f(x,y) \, dA = \iint_{\mathcal{D}_1} f(x,y) \, dA + \iint_{\mathcal{D}_2} f(x,y) \, dA$$

Subdividing Regions

Example 6: The triangle \mathcal{D} with vertices (1,2), (5,0), and (3,4) can be subdivided two different ways, giving two different iterated integrals for f dA. 4 $\int_{1}^{3} \int_{(5-x)/2}^{x+1} f \, dy \, dx + \int_{3}^{5} \int_{(5-x)/2}^{-2x+10} f \, dy \, dx$ 3 = -2x + 102 \mathcal{R} -1 \mathcal{R}_1 R, 0 0 2 3 4 5

$$\underbrace{\int_{0}^{2} \int_{-2y+5}^{(10-y)/2} f \, dx \, dy}_{\mathcal{R}_{1}} + \underbrace{\int_{2}^{4} \int_{y-1}^{(10-y)/2} f \, dx \, dy}_{\mathcal{R}_{2}}$$

Subdividing Regions (optional)

Example 7:

Region *E* can be decomposed into 3 simple regions T, U, V:

$$\begin{array}{ll} T: & 0 \leq y \leq 1 & 0 \leq x \leq y - y^3 \\ U: & -1 \leq x \leq 0 & 0 \leq y \leq (x+1)^2 \\ V: & -1 \leq y \leq 0 & -1 \leq x \leq y - y^3 \end{array}$$

Note that T, V are horizontally simple and U is vertically simple as shown.

$$\iint_E f \, dA = \iint_T f \, dA + \iint_U f \, dA + \iint_V f \, dA = \text{NIRCE}$$

$$=\underbrace{\int_{0}^{1}\int_{0}^{y-y^{3}} f\,dx\,dy}_{T} + \underbrace{\int_{-1}^{0}\int_{0}^{(x+1)^{2}} f\,dy\,dx}_{U} + \underbrace{\int_{-1}^{0}\int_{-1}^{y-y^{3}} f\,dx\,dy}_{V}$$

Subdividing Regions

Example 7 (continued):

Solving for y in $x = y - y^3$ is not possible but solving for x in $y = (x + 1)^2$ is possible. Now, Region E can be decomposed into 2 simple Regions R, S:

 $\begin{array}{rrrr} R: & 0 \leq y \leq 1 & \sqrt{y} - 1 & \leq x \leq y - y^3 \\ S: & -1 \leq y \leq 0 & -1 & \leq x \leq y - y^3 \end{array}$

Note that both R, S are horizontally simple.

$$\iint_E f \, dA = \iint_R f \, dA + \iint_S f \, dA$$

$$=\underbrace{\int_{0}^{1}\int_{\sqrt{y}-1}^{y-y^{3}}f\,dx\,dy}_{R}\,+\,\underbrace{\int_{-1}^{0}\int_{-1}^{y-y^{3}}f\,dx\,dy}_{S}$$

5 Properties of Double Integrals

Joseph Phillip Brennan Jila Niknejad

Facts about Double Integrals

• If f and g are functions on \mathcal{D} , then

$$\iint_{\mathcal{D}} (f(x,y) + g(x,y)) \, dA = \iint_{\mathcal{D}} f(x,y) \, dA + \iint_{\mathcal{D}} g(x,y) \, dA.$$

• If k is a constant, then
$$\iint_{\mathcal{D}} kf(x,y) dA = k \iint_{\mathcal{D}} f(x,y) dA$$
.

• If $f(x,y) \leq g(x,y)$ for all (x,y) in \mathcal{D} , then

$$\iint_{\mathcal{D}} f(x,y) \, dA \leq \iint_{\mathcal{D}} g(x,y) \, dA.$$

In this case, the volume of the solid between the graphs of f and g is

$$\iint_{\mathcal{D}} (g(x,y) - f(x,y)) \, dA.$$

Facts about Double Integrals

• The area of \mathcal{D} is $\iint_{\mathcal{D}} 1 \, dA$ (The volume of the solid under the plane z = 1 over \mathcal{D} is the area of \mathcal{D} times 1).

• The average value of f(x, y) on \mathcal{D} is

$$\overline{f} = \frac{\iint_{\mathcal{D}} f(x, y) \, dA}{\operatorname{Area}(\mathcal{D})} = \frac{\iint_{\mathcal{D}} f(x, y) \, dA}{\iint_{\mathcal{D}} 1 \, dA}.$$

• If m, M are constants and $m \leq f(x, y) \leq M$ for all (x, y) in \mathcal{D} , then

$$m(\operatorname{Area}(\mathcal{D})) \leq \iint_{\mathcal{D}} f(x, y) \, dA \leq M(\operatorname{Area}(\mathcal{D})).$$

Double Integrals: Applications

Example 8: What is the average value of $f(x, y) = \sqrt{x^2 + 9}$ on the triangle T with vertices (0, 0), (4, 0), and (4, 2)?

Solution: First, draw the triangle.

The average value is

$$\overline{f} = \frac{1}{\text{Area}(T)} \iint_{T} f \, dA$$

$$= \frac{1}{4} \int_{0}^{4} \int_{0}^{x/2} \sqrt{x^{2} + 9} \, dy \, dx = \frac{1}{4} \int_{0}^{2} \int_{2y}^{4} \sqrt{x^{2} + 9} \, dx \, dy$$

The second iterated integral looks hard, so try the first one.

Double Integrals: Applications

Example 8 (continued):

$$\overline{f} = \frac{1}{4} \int_0^4 \int_0^{x/2} \sqrt{x^2 + 9} \, dy \, dx$$

$$= \frac{1}{4} \int_0^4 \left[y \sqrt{x^2 + 9} \Big|_{y=0}^{y=x/2} \right] dx$$

$$= \frac{1}{8} \int_0^4 x \sqrt{x^2 + 9} \, dx \qquad (\text{substitute } u = x^2 + 9, \ du = 2x \, dx)$$

$$= \frac{1}{16} \int_{9}^{25} u^{1/2} du = \frac{1}{24} u^{3/2} \Big|_{9}^{25} du = \frac{49}{12}$$