Section 15.2
 Double Integrals Over More General Regions

Introduction
Integrating Over Horizontally and Vertically Simple Regions
Setting up
Example, Vertically Simple
Example, Horizontally Simple
Example, Finding the Domain of a 3D Solid
Reversing the Order of Integration
Integrating Over More General Regions
Properties of Double Integrals
An Application Example

1 Introduction

Double Integrals Over Arbitrary Regions

For a rectangular region $\mathcal{R}=[a, b] \times[c, d]$, the double integral

$$
\iint_{R} f(x, y) d A
$$

can be calculated as an iterated integral

$$
\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \quad \text { or } \quad \int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

where the inner integral represents a slice of \mathcal{R} at a fixed value of x or y.

In general, suppose \mathcal{D} is an arbitrary region in \mathbb{R}^{2}. How do we calculate

$$
\iint_{\mathcal{D}} f(x, y) d A
$$

as an iterated integral?

2 Integrating Over Horizontally and Vertically Simple Regions

Simple Regions

Idea: When possible, slice \mathcal{D} into vertical or horizontal strips.

$$
1 \ll \triangle D \gg 1-\cdots+
$$ Vertically simple region

(The upper and the lower bounds are elementary functions)

 Horizontally simple region
(The right and the left bounds are elementary functions)

- In these cases, we can express $\iint_{\mathcal{D}} f(x, y) d A$ as an iterated integral.
- The inner limits of integration are not constant, but depend on the outside variable:

$$
\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x \quad \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

Simple Regions

Vertically simple regions

Can be sliced into vertical strips each with constant x-coordinate

$$
\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

Horizontally simple regions

Can be sliced into horizontal strips each with constant y-coordinate

$$
\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

Inner limits are functions of outer variable
Outer limits are constants

Steps for Integration Set up

(1) Draw the region of integration in \mathbb{R}^{2}.
(2) Draw a horizontal arrow in the increasing x-direction if the region is horizontally simple; draw a vertical arrow in the increasing y-direction if the region is vertically simple
(0 Choose the lower and upper curves using the arrow in Item 2. Solve for x in terms of y if the region is horizontally simple and for y in terms of x if the region is vertically simple.
(1) Find the two constant bounds for y if horizontally simple; find the two constant bounds for x if vertically simple.

- Set up the inner integral using bounds in Item 3 and the outer bounds using Item 4.
- Integrate the inner first considering the outer variable constant. Replace inner bounds and integrate the outer.

Integrating over Simple Regions

Example 1: Evaluate $\iint_{\mathcal{D}}(x+2 y) d A$ where \mathcal{D} is the region between $y-x^{2}=0$ and $y+x^{2}=2$.

Integrating over Simple Regions

Example 2: Evaluate $\iint_{\mathcal{D}} x y d A$ where \mathcal{D} is the region bounded by $y=x$ and $y^{2}=3 x+4$.

Solution: Start by drawing \mathcal{D} and observe that it is horizontally simple. For each boundary curve, express x as a function of y :

$$
x=y \quad x=\frac{y^{2}-4}{3}
$$

Intersection points: $(-1,-1)$ and (4, 4).
So

$$
D=\{(x, y) \in \mathbb{R}^{2} \left\lvert\, \underbrace{\frac{y^{2}-4}{3} \leq x \leq y}_{\text {Step 3 }}\right., \underbrace{-1 \leq y \leq 4}_{\text {Step 4 }}\}
$$

Integrating over Simple Regions

Example 2 (continued):
$\mathcal{D}=\left\{(x, y) \in \mathbb{R}^{2} \mid-1 \leq y \leq 4, \frac{y^{2}-4}{3} \leq x \leq y\right\}$
$\iint_{\mathcal{D}} x y d A \underbrace{=\int_{y=-1}^{y=4} \int_{x=\frac{y^{2}-4}{3}}^{x=y} x y d x d y}_{\text {Step } 5}$
$=\int_{y=-1}^{y=4}\left[\left.\frac{1}{2} x^{2} y\right|_{x=\frac{y^{2}-4}{3}} ^{x=y}\right]_{y^{4}-8 y^{2}+16}^{y^{2}} d y$
$=\int_{y=-1}^{y=4} \frac{1}{2}\left(y^{2}\right) y-\frac{1}{2}(y \frac{\overbrace{\left(y^{2}-4\right)^{2}}^{2}}{9}) d x$
$=\int_{-1}^{4}\left(\frac{-8 y}{9}+\frac{17 y^{3}}{18}-\frac{y^{5}}{18}\right) d y$
$=-\frac{4 y^{2}}{9}+\frac{17 y^{4}}{72}+\left.\frac{y^{6}}{108}\right|_{-1} ^{4}=\frac{125}{8}$.

Integrating over Simple Regions

Example 2 (continued): Take another look at the region \mathcal{D}.

- While it is technically possible to represent \mathcal{D} as a set of iterated integrals in order $\iint_{\mathcal{D}} x y d y d x$, the lower limit of integration will not be elementary:

$$
y= \begin{cases}-\sqrt{3 x+4} & \text { if } x<-1 \\ x & \text { if } x>-1\end{cases}
$$

Example 3: Find the volume of the tetrahedron bounded by the planes:

$$
x+2 y+z=2 \quad x=2 y \quad x=0 \quad z=0
$$

Solution: The tetrahedron lies under
 $z=2-x-2 y$ and above the vertically simple region

$$
\begin{aligned}
& \begin{array}{l}
\mathcal{D}=\left\{(x, y) \mid 0 \leq x \leq 1, \quad \frac{x}{2} \leq y \leq 1-\frac{x}{2}\right\} \\
\text { Volume }
\end{array}=\iint_{\mathcal{D}}(2-x-2 y) d A \\
& =\int_{0}^{1} \int_{\frac{x}{2}}^{1-\frac{x}{2}}(2-x-2 y) d y d x \\
& =\int_{0}^{1}\left(x^{2}-2 x+1\right) d x=\frac{1}{3}
\end{aligned}
$$

3 Reversing the Order of Integration

Changing the Order of Integration

Some regions are both vertically and horizontally simple.

Example 4:

$$
\begin{aligned}
& \mathcal{D}=\left\{(x, y) \mid 1 \leq x \leq 3,1 \leq y \leq x^{2}\right\} \\
& \text { (vertically simple) } \\
&=\{(x, y) \mid 1 \leq y \leq 9, \sqrt{y} \leq x \leq 3\} \\
& \text { (horizontally simple) }
\end{aligned}
$$

$$
\iint_{\mathcal{D}} f(x, y) d A=\int_{1}^{3} \int_{1}^{x^{2}} f(x, y) d y d x=\int_{1}^{9} \int_{\sqrt{y}}^{3} f(x, y) d x d y
$$

Which iterated integral should you use? Whichever is more convenient.

Reversing the Order Steps

The main reason for changing the order of integration is that the given order results in a non-elementary antiderivative; in those cases, changing the order may be helpful.

- Use the given (current) order and draw a region with the arrow corresponding to the given order.
- Change the arrow form horizontal to vertical or vice versa to reverse the order. Follow Steps 3-6 of integration set-up.

Reversing the Order of Integration

Example 5: Evaluate $\int_{0}^{1} \int_{y}^{1} e^{x^{2}} d x d y$.
Since $\int e^{x^{2}} d x$ cannot be evaluated, we need to do something new.
Solution: First, draw the domain of integration:

$$
\mathcal{D}=\{(x, y) \mid 0 \leq y \leq 1, y \leq x \leq 1\}
$$

It is doubly simple, so it can also be expressed as

$$
\mathcal{D}=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq x\}
$$

$$
1 \ll \triangle D \ggg \rightarrow+
$$

$$
\int_{0}^{1} \int_{y}^{1} e^{x^{2}} d x d y=\iint_{\mathcal{D}} e^{x^{2}} d A=\int_{0}^{1} \int_{0}^{x} e^{x^{2}} d y d x
$$

Changing the Order of Integration

Example 5 (continued):

$$
\begin{aligned}
\int_{0}^{1} \int_{y}^{1} e^{x^{2}} d x d y & =\iint_{\mathcal{D}} e^{x^{2}} d A=\int_{0}^{1} \int_{0}^{x} e^{x^{2}} d y d x \\
& =\int_{0}^{1}\left[\left.e^{x^{2}} y\right|_{y=0} ^{y=x}\right] d x \\
& =\int_{0}^{1} x e^{x^{2}} d x \\
& =\left.\frac{e^{x^{2}}}{2}\right|_{x=0} ^{x=1}=\frac{1}{2}(e-1)
\end{aligned}
$$

4 Integrating Over More General Regions

Integrating Over General Regions

The region of integration can be subdivided:

If \mathcal{D} is the union of \mathcal{D}_{1} and \mathcal{D}_{2}, where \mathcal{D}_{1} and \mathcal{D}_{2} don't overlap except on their boundaries, then

$$
\iint_{\mathcal{D}} f(x, y) d A=\iint_{\mathcal{D}_{1}} f(x, y) d A+\iint_{\mathcal{D}_{2}} f(x, y) d A
$$

Subdividing Regions

Example 6: The triangle \mathcal{D} with vertices $(1,2),(5,0)$, and $(3,4)$ can be subdivided two different ways, giving two different iterated integrals for

$$
\underbrace{\int_{1}^{3} \int_{(5-x) / 2}^{x+1} f d y d x}_{\mathcal{R}_{1}}+\underbrace{\int_{3}^{5} \int_{(5-x) / 2}^{-2 x+10} f d y d x}_{\mathcal{R}_{2}}
$$

$$
\underbrace{\int_{0}^{2} \int_{-2 y+5}^{(10-y) / 2} f d x d y}_{\mathcal{R}_{1}}+\underbrace{\int_{2}^{4} \int_{y-1}^{(10-y) / 2} f d x d y}_{\mathcal{R}_{2}}
$$

Subdividing Regions (optional)

Example 7:

Region E can be decomposed into 3 simple regions T, U, V :

$$
\begin{array}{ccl}
T: & 0 \leq y \leq 1 & 0 \leq x \leq y-y^{3} \\
U: & -1 \leq x \leq 0 & 0 \leq y \leq(x+1)^{2} \\
V: & -1 \leq y \leq 0 & -1 \leq x \leq y-y^{3}
\end{array}
$$

Note that T, V are horizontally simple and U is vertically simple as shown.

$$
\begin{aligned}
\iint_{E} f d A & =\iint_{T} f d A+\iint_{U} f d A+\iint_{V} f d A \\
& =\underbrace{\int_{0}^{1} \int_{0}^{y-y^{3}} f d x d y}_{T}+\underbrace{\int_{-1}^{0} \int_{0}^{(x+1)^{2}} f d y d x}_{U}+\underbrace{\int_{-1}^{0} \int_{-1}^{y-y^{3}} f d x d y}_{V}
\end{aligned}
$$

Subdividing Regions

Example 7 (continued):

Solving for y in $x=y-y^{3}$ is not possible but solving for x in $y=(x+1)^{2}$ is possible. Now, Region E can be decomposed into 2 simple Regions R, S :

$$
\begin{array}{rrrl}
R: & 0 \leq y \leq 1 & \sqrt{y}-1 & \leq x \leq y-y^{3} \\
S: & -1 \leq y \leq 0 & -1 & \leq x \leq y-y^{3}
\end{array}
$$

Note that both R, S are horizontally simple.

$$
\begin{aligned}
\iint_{E} f d A & =\iint_{R} f d A+\iint_{S} f d A \\
& =\underbrace{\int_{0}^{1} \int_{\sqrt{y}-1}^{y-y^{3}} f d x d y}_{R}+\underbrace{\int_{-1}^{0} \int_{-1}^{y-y^{3}} f d x d y}_{S}
\end{aligned}
$$

5 Properties of Double Integrals

Facts about Double Integrals

- If f and g are functions on \mathcal{D}, then

$$
\iint_{\mathcal{D}}(f(x, y)+g(x, y)) d A=\iint_{\mathcal{D}} f(x, y) d A+\iint_{\mathcal{D}} g(x, y) d A
$$

- If k is a constant, then $\iint_{\mathcal{D}} k f(x, y) d A=k \iint_{\mathcal{D}} f(x, y) d A$.
- If $f(x, y) \leq g(x, y)$ for all (x, y) in \mathcal{D}, then

$$
\iint_{\mathcal{D}} f(x, y) d A \leq \iint_{\mathcal{D}} g(x, y) d A .
$$

In this case, the volume of the solid between the graphs of f and g is

$$
\iint_{\mathcal{D}}(g(x, y)-f(x, y)) d A .
$$

Facts about Double Integrals

- The area of \mathcal{D} is $\iint_{\mathcal{D}} 1 d A$ (The volume of the solid under the plane $z=1$ over \mathcal{D} is the area of \mathcal{D} times 1).
- The average value of $f(x, y)$ on \mathcal{D} is

$$
\bar{f}=\frac{\iint_{\mathcal{D}} f(x, y) d A}{\operatorname{Area}(\mathcal{D})}=\frac{\iint_{\mathcal{D}} f(x, y) d A}{\iint_{\mathcal{D}} 1 d A} .
$$

- If m, M are constants and $m \leq f(x, y) \leq M$ for all (x, y) in \mathcal{D}, then

$$
m(\operatorname{Area}(\mathcal{D})) \leq \iint_{\mathcal{D}} f(x, y) d A \leq M(\operatorname{Area}(\mathcal{D}))
$$

Double Integrals: Applications

Example 8: What is the average value of $f(x, y)=\sqrt{x^{2}+9}$ on the triangle T with vertices $(0,0),(4,0)$, and $(4,2)$?

Solution: First, draw the triangle.
The average value is

$$
\begin{aligned}
\bar{f} & =\frac{1}{\operatorname{Area}(T)} \iint_{T} f d A \\
& =\frac{1}{4} \int_{0}^{4} \int_{0}^{x / 2} \sqrt{x^{2}+9} d y d x=\frac{1}{4} \int_{0}^{2} \int_{2 y}^{4} \sqrt{x^{2}+9} d x d y
\end{aligned}
$$

The second iterated integral looks hard, so try the first one.

Double Integrals: Applications

Example 8 (continued):

$$
\begin{aligned}
\bar{f} & =\frac{1}{4} \int_{0}^{4} \int_{0}^{x / 2} \sqrt{x^{2}+9} d y d x \\
& =\frac{1}{4} \int_{0}^{4}\left[\left.y \sqrt{x^{2}+9}\right|_{y=0} ^{y=x / 2}\right] d x
\end{aligned}
$$

$$
\left.=\frac{1}{8} \int_{0}^{4} x \sqrt{x^{2}+9} d x \quad \text { (substitute } u=x^{2}+9, d u=2 x d x\right)
$$

$$
=\frac{1}{16} \int_{9}^{25} u^{1 / 2} d u=\left.\frac{1}{24} u^{3 / 2}\right|_{9} ^{25} d u=\frac{49}{12}
$$

